

CLARK COUNTY • DEPARTMENT OF AIR QUALITY

4701 W. Russell Road Suite 200 • Las Vegas, NV 89118-2231 (702) 455-5942 • Fax (702) 383-9994 Marci Henson Director

PART 70 TECHNICAL SUPPORT DOCUMENT (STATEMENT of BASIS)

APPLICATION FOR: **Operating Permit Minor Revision**

SUBMITTED BY Trinity Consultants

Silverhawk Generating Station Source ID: 01584

LOCATION:

15111 Apex Power Parkway Las Vegas, Nevada 89124

SIC code 4911, "Electric Services" NAICS code 221112, "Fossil Fuel Electric Power Generation"

January 2, 2020

EXECUTIVE SUMMARY

NV Energy's Silverhawk Generating Station (SGS) is an electrical power generating station located at 15111 Apex Power Parkway in North Las Vegas, Nevada. The legal description of the source location is as follows: portions of Township 18S, Range 63E, Section 5 in Apex Valley, County of Clark, State of Nevada. The source is situated in hydrographic area 216 (Garnett Valley). Garnett Valley is currently designated attainment for all regulated pollutants.

SGS is a major stationary source for PM_{10} , $PM_{2.5}$, NO_x , and CO and a minor source for SO_2 , VOC, and HAPs pollutants. The generating station operates two 175 MW natural gas-fired combustion turbine generators, two heat recovery steam generators with natural gas-fired duct burners, one steam turbine generator, one 3-cell, 6,600 gpm cooling tower, one 100 hp LPG-fired emergency generator, one 250 hp diesel-powered fire pump, and a 2,206 hp diesel emergency generator. The potential electrical generating capacity of the source is above 250 MMBtu/hr. As a result, the source is a categorical source, as defined by AQR 12.2.2(j)(1). SGS is also a source of GHG pollutants.

The following table summarizes SGS's potential-to-emit for each regulated air pollutant for all emission units identified by this Part 70 OP. These emission rates are for reference purposes only and are not intended to be enforced by direct measurement unless otherwise noted in Section III below.

Pollutant	PM ₁₀	PM _{2.5}	NOx	СО	SO ₂	VOC	HAPs	GHG ²
Tons/year	149.00	149.00	318.91	562.38	10.35	85.57	5.39	1,955.804.82
Major Source Thresholds (Title V)	100	100	100	100	100	100	10/25 ¹	-
Major Stationary Source Thresholds (PSD)	250	250	250	250	250	250	10/25 ¹	-
Major Stationary Source Threshold (Nonattainment)			100			100		

¹Ten tons for any individual hazardous air pollutant, or 25 tons for the combination of all hazardous air pollutants.

DAQ will continue to require sources to estimate their GHG potential to emit in terms of each individual pollutant (CO₂, CH₄, N₂O, CF₆, etc.) and the TSD includes these PTEs for informational purposes.

The turbines are subject to the requirements of 40 CFR Part 60, Subparts A and GG, the heat recovery steam generators to the turbines are subject to 40 CFR Part 60, Subparts A and Da, the fire pump and emergency generator are subject to 40 CFR Part 63, Subpart ZZZZ, the 2019 diesel emergency generator is subject to 40 CFR Part 60, Subpart IIIII, and the facility is subject to 40 CFR Part 72 and 75.

DAQ has received delegated authority from the U.S. Environmental Protection Agency to implement the requirements of the Part 70 OP. Based on the information submitted by the applicant and a technical review performed by DAQ staff, the draft revised Part 70 OP to NV Energy is proposed.

²Metric tons per year, CO2e.

TABLE OF CONTENTS

I.	ACRONYMS	5
II.	SOURCE INFORMATION	6
	A. General	6
	B. Description of Process	6
	C. Permitting History	7
	D. Current Permitting Action	7
	E. Alternate Operating Scenario	7
III.	EMISSIONS INFORMATION	7
	A. Source-wide PTE	7
	B. Allowable Emissions Calculations	8
	C. Operational Limits	8
	D. Control Technology	
	E. Monitoring	
	F. Performance Testing	
	G. RACT Analysis	
IV.	REGULATORY REVIEW	9
	A. Local Regulatory Requirements	9
	B. Federally Applicable Regulations	
V.	COMPLIANCE	10
	A. Compliance Certification	10
	B. Summary of Monitoring for Compliance	10
VI.	EMISSION REDUCTION CREDITS (OFFSETS)	10
VII.	MODELING	10
	A. Increment Analysis	10
VIII	ATTACHMENTS	11

LIST OF TABLES

Table I-1: List of Acronyms	5
Table II-B-1: Summary of Emission Units	6
Table II-B-2: Insignificant Activities	7
Table II-C-1: Permit History	7
Table III-A-1: Source-wide PTE	7
Table III-B-1: PTE— Emission Units	8
Table III-G-1: Emissions Increase	8
Table IV-B-1: Emission Standards for IC Engines	9
Table V-C-1: Compliance Monitoring	10
Table VIII-1: Engine Calculations	11
Table VIII-2: Greenhouse Gases Calculations	11
Table VIII-3: Source-Wide Emission Unit PTE Summary (tons per year)	12

I. ACRONYMS

Table I-1: List of Acronyms

Acronym	Term
AQR	Clark County Air Quality Regulations
ATC	Authority to Construct
CAAA	Clean Air Act, as amended, or Clean Air Act Amendments
CEMS	Continuous Emissions Monitoring System
CF ₆	Carbon Floride
CFC	Chlorofluorocarbon
CFR	United States Code of Federal Regulations
CH ₄	Methane
CO	Carbon Monoxide
CO ₂	Carbon Dioxide
DAQ	Clark County Department of Air Quality
dscf	Dry Standard Cubic Feet
DOM	Date of Manufacturer
EPA	United States Environmental Protection Agency
EU	Emission Unit
GHG	Greenhouse Gases
HAP	Hazardous Air Pollutant
HCFC	Hydrochlorofluorocarbon
HHV	High Heating Value
hp	Horse Power
HRSG	Heat Recovery Steam Generator
MMBtu	Millions of British Thermal Units
MW	Megawatt
N ₂ O	Nitrous Oxide
NAICS	North American Industry Classification System
NESHAP	National Emission Standard for Hazardous Air Pollutants
NOx	Nitrogen Oxides
NSPS	New Source Performance Standards
O ₂	Oxygen
OP	Operating Permit
PM _{2.5}	Particulate Matter less than 2.5 microns
PM ₁₀	Particulate Matter less than 10 microns
ppmvd	Parts per Million, Volumetric Dry
PSD	Prevention of Significant Deterioration
PTE	Potential to Emit
QA/QC	Quality Assurance/Quality Control
QAP	Quality Assurance Plan
RATA	Relative Accuracy Test Audit
RMP	Risk Management Plan
scf	Standard Cubic Feet
SCR	Selective Catalytic Reduction
SIC	Standard Industrial Classification
SIP	State Implementation Plan
SOx	Sulfur Oxides
TDS	Total Dissolved Solid
TSD	Technical Support Document
U.S.C.	United States Code
VOC	Volatile Organic Compound

II. SOURCE INFORMATION

A. GENERAL

Permittee: Nevada Power Company Mailing Address: 6226 West Sahara Avenue

Responsible Dariusz Rekowski

Official:

Phone Number: 702-402-5762

Hydrographic Area: 216, the Garnett Valley

B. DESCRIPTION OF PROCESS

Silverhawk Generating Station operates two 175 MW natural gas-fired combustion turbine generators, two heat recovery steam generators with natural gas-fired duct burners, one steam turbine generator, one 3-cell, 6,600 gpm cooling tower, one 100 hp LPG-fired emergency generator, one 250 hp diesel-powered fire pump, and a 2,206 hp diesel emergency generator.

Table II-B-1 lists the emission units covered by this operating permit.

Table II-B-1: Summary of Emission Units

EU	Description	Rating	Manufacturer	Model #	Serial #	SCC
A01	Natural Gas-Fired Turbine	175 MW	Westinghouse	501FD	37A-8193-1	20100201
A02	Duct-Burner Heat Recovery Steam Generator (associated with A01)	530 MMBtu/hr	Alstom			10100601
A03	Natural Gas-Fired Turbine	175 MW	Westinghouse	501FD	37A-8194-1	20100201
A04	Duct-Burner Heat Recovery Steam Generator (associated with A03)	530 MMBtu/hr	Alstom			10100601
A05	Diesel-Powered Fire Pump; DOM: 2004	250 hp	Clarke	JU6HUF50	PE6068TF234110	20200102
A06	LPG-Powered Emergency Engine; DOM: 2004	100 hp	Generac	SG060	2072892	20201001
A07	Three-Cell Cooling Tower; 0.001% Drift Loss; 8,144 ppm TDS	6,600 gpm	International Cooling Tower	FCC-12-03	FCC-12-03-8434-03	38500101
	Emergency Generator	1,500 kW		3512C	TBD	
A08 ¹	Diesel-Powered Engine; DOM: 2019	2,206 hp	Caterpillar	TBD	TBD	20200102

¹New

The following units or activities listed in in Table II-B-2 are present at this source, but are being deemed insignificant.

Table II-B-2: Insignificant Activities

Description
Mobile Combustions Sources
Station Maintenance Activities
Maintenance Shop Activities (e.g., part washers, sand blasters, etc.)
Steam Cleaning Operations
LPG Tank, 500 gallons
Diesel Tank, 280 gallons
Lube oil sumps and vents
Portable gas-fired pump, 3.5 hp

C. PERMITTING HISTORY

The following represents permitting activities prior to this permitting action:

Table II-C-1: Permit History

Issue Date	Description
07/20/2016	Part 70 permit issued

D. CURRENT PERMITTING ACTION

This is a minor revision to the Part 70 permit. The source is requesting the following:

1. Add a new 2,206 hp emergency generator (EU: A08).

E. ALTERNATE OPERATING SCENARIO

None proposed.

III. EMISSIONS INFORMATION

A. SOURCE-WIDE PTE

Silverhawk Generating Station is a Title V major source for PM₁₀, PM_{2.5}, NO_x, and CO and a minor source for SO₂, VOC, and HAPs pollutants, including greenhouse gases (GHGs).

Table III-A-1: Source-wide PTE (tons per vear)

1 4 6 111 7 1		<u></u> \	pc. j.	Ju. /			
PM ₁₀	PM _{2.5}	NOx	СО	SO ₂	VOCs	HAPs	GHGs ¹
149.00	149.00	318.91	562.38	10.35	85.57	5.39	1,955,775.63

¹Metric tons per year.

B. ALLOWABLE EMISSIONS CALCULATIONS

The following tables summarize the Allowable PTE.

Table III-B-1: PTE— Emission Units

EU	PM ₁₀	PM _{2.5}	NO _x	CO	SO ₂	VOC	HAPs
A01 + A02	73.80	73.80	154.10	280.40	5.10	42.60	2.67
A03 + A04	73.80	73.80	154.10	280.40	5.10	42.60	2.67
A05	0.14	0.14	1.94	0.42	0.13	0.16	0.02
A06	0.01	0.01	0.77	0.10	0.01	0.02	0.01
A07	1.20	1.20	0.00	0.00	0.00	0.00	0.00
A08	0.05	0.05	8.00	1.06	0.01	0.19	0.02
Total	149.00	149.00	318.91	562.38	10.35	85.57	5.39

C. OPERATIONAL LIMITS

All previous operational limits remain in effect.

D. CONTROL TECHNOLOGY

The proposed new emergency generator meets the NSPS subpart IIII standards.

All previous emissions controls remain in effect.

E. MONITORING

All monitoring requirements remain in effect.

F. PERFORMANCE TESTING

None required due to this permitting this action; therefore all previous testing requirements remain in effect.

G. RACT ANALYSIS

Table III-G-1: Emissions Increase

	PM ₁₀	PM _{2.5}	NO _x	СО	SO ₂	voc	H ₂ S	Pb
Minor NSR Significance Thresholds	7.5	5.0	20	50	20	20	5	0.6
Existing Permit	145.95	145.95	310.91	561.32	10.34	85.38	0	0
New Permit	149.00	149.00	318.91	562.38	10.35	85.57	0	0
Total ∆ PTE	0.05	0.05	8.00	1.06	0.01	0.19	0	0
Triggers	None	None	None	None	None	None	None	None

IV. REGULATORY REVIEW

A. LOCAL REGULATORY REQUIREMENTS

DAQ has determined that the following public laws, statutes, and associated regulations are applicable:

- AQR 26, "Emission of Visible Air Contaminants"
- AQR 40, "Prohibitions of Nuisance"
- AQR 43, "Odors in the Ambient Air"
- AQR 70, "Emergency Procedures"
- AQR 80, "Circumvention"

B. FEDERALLY APPLICABLE REGULATIONS

Subpart IIII—Standards of Performance for Stationary Compression Ignition Internal Combustion Engines

40 CFR Part 60.4200 Am I subject to this subpart?

Discussion: Silverhawk Generating Station has a 2,206-hp 2019 emergency diesel engine (EU: A08) is subject to 40 CFR Part 60, Subpart IIII.

This source has provided certifications for the emergency diesel engine listed above that demonstrate compliance with Subpart IIII.

This emergency diesel engine has demonstrated compliance with the emission standards set forth in 40 CFR Part 89.112 for new nonroad internal combustion (IC) engines for the same model year and maximum engine power, which are provided in Table IV-B-1.

Table IV-B-1: Emission Standards for IC Engines

EU	Year	Power (kW)	NO _x (g/kW-hr)	NMHC (g/kW-hr)	CO (g/kW-hr)	PM (g/kW-hr)
A08	2019	> 560	3.5	0.19	3.5	0.04

The 2,206 hp emergency diesel engine at this source is subject to 40 CFR Part 60, Subpart IIII and the fire pump is subject to 40 CFR Part 63, Subpart ZZZZ, also must meet the fuel requirements it references from 40 CFR Part 80.510(b) (in Subpart I) for nonroad diesel fuel. The source must purchase diesel fuel that meets the per-gallon standard of 15 parts per million (ppm) maximum sulfur content, a minimum cetane index of 40, or a maximum aromatic content of 35 volume percent. Since all refiners and importers of nonroad diesel fuel are subject to these federal standards, pursuant to 40 CFR Part 80.510, it is reasonable to assume the operators of the engines have little, if any, opportunity to acquire fuel that violates these standards. Therefore, the OP does not require the permittee to monitor or keep records of the sulfur content, cetane index, or aromatic content of the diesel fuel used in the emergency diesel engine and fire pump.

V. COMPLIANCE

A. COMPLIANCE CERTIFICATION

Records shall be kept for all limitations specified in the permit.

Requirements for reporting remain the same.

B. SUMMARY OF MONITORING FOR COMPLIANCE

Table V-C-1: Compliance Monitoring

EU	Process Description	Monitored Pollutants	Applicable Subsection Title	Requirements	Compliance Monitoring
A08				Sulfur limited to 15 ppm and either a minimum cetane index of 40 or a maximum aromatic content of 35% by volume.	Recordkeeping of fuel use and hours of operation with a nonresettable hour meter. Nevada State law

VI. EMISSION REDUCTION CREDITS (OFFSETS)

None.

VII. MODELING

A. INCREMENT ANALYSIS

Silverhawk Generating Station is a major source in Hydrographic Area 216 (Garnet Valley). Permitted emission units include two turbines, one fire pump, two generators and one cooling tower. Since minor source baseline dates for PM₁₀ (December 31, 1980), NO₂ (January 24, 1991) and SO₂ (December 31, 1980) have been triggered, Prevention of Significant Deterioration (PSD) increment analysis is required.

DAQ modeled the source using AERMOD to track the increment consumption. Stack data submitted by the applicant were supplemented with information available for similar emission units. Five years (2011 to 2015) of meteorological data from the McCarran Station were used in the model. U.S. Geological Survey National Elevation Dataset terrain data were used to calculate elevations. Table VII-A.1 shows the location of the maximum impact and the potential PSD increment consumed by the source at that location. The impacts are below the PSD increment limits.

Table VII-A.1: PSD Increment Consumption

Pollutant	Averaging	Source's PSD Increment	Location of Ma	Location of Maximum Impact			
	Period	Consumption (µg/m³)	UTM X (m)	UTM Y (m)			
SO ₂	3-hour	19.08 ¹	683061	4031511			
SO ₂	24-hour	6.53 ¹	683069	4031559			
SO ₂	Annual	2.50	683069	4031559			
NOx	Annual	4.52	682950	4031747			
PM ₁₀	24-hour	10.80 ¹	683069	4031559			
PM ₁₀	Annual	3.48	683069	4031559			

¹ Second High Concentration.

VIII. ATTACHMENTS

Table VIII-1: Engine Calculations

EU#	A08				Horsepower:	2,206		Emission Factor	Control	Potential Emissions		
Make:					Hours/Day:	24.0		(lb/hp-hr)	Efficiency	lb/hr	lb/day	ton/yr
Model:					Hours/Year	500	PM10	8.82E-05	0.00%	0.19	4.67	0.05
S/N:							NOx	1.45E-02	0.00%	32.00	768.03	8.00
							CO	1.92E-03	0.00%	4.23	101.55	1.06
Manufac	Manufacturer Guarantees						SO ₂	1.21E-05	0.00%	0.03	0.64	0.01
PM10		0.04	g/hp-hr	•			VOC	3.53E-04	0.00%	0.78	18.68	0.19
NOx		6.58	g/hp-hr	•			HAP	3.05E-05	0.00%	0.07	1.62	0.02
СО		0.87	g/hp-hr	•								
SO ₂			lb/hp-hr	•								
voc		0.16	g/hp-hr	•								
Engine T	ngine Type: Diesel						Diesel Fue))				

Table VIII-2: Greenhouse Gases Calculations

EU: A08	Engine	2,206 hp	500	0.138	55150	CO ₂	73.96	104.6	14.43	1067.60	533798.90	533.80	1	533.80
						CH₄	0.003	104.6	14.43	0.04	21.65	0.02	25	0.54
						N ₂ O	0.0006	104.6	14.43	0.01	4.33	0.004	298	1.29
CO ₂	533.80	tons/yr												
CH₄	0.54	tons/yr												
N ₂ O	1.29	tons/yr												
GHG	533.80	tons/yr												
CO ₂ e	535.63	tons/yr												
Fuel usa	ge calcula	tion: (.035	lb/hp-hr x	hp x hrs/yr)/7	7 lb/gal									
GWP is u	sed to co	mpare the	abilities of	different gre	enhouse	gases	to trap heat i	n the atmos	sphere. GWF	is based on	the heat-ab	sorbing		
ablity of	each gas	relative of	that of CO	Once the ind	ividual Gl	HG emi	ssions are ca	lculated, the	t have to be n	nultipled by t	he GWP to			
obtain the CO₂e value.														

Table VIII-3 summarizes PTE with its allowable operational condition for each emission unit in the OP. This table can be used to prepare Annual Emissions Inventory Reports with forms available on DAQ's website (http://www.clarkcountynv.gov). The values below should be entered as the PTE for each respective emission unit when using the annual emission inventory reporting forms provided by DAQ.

Table VIII-3: Source-Wide Emission Unit PTE Summary (tons per year)

EU	Condition	PM ₁₀	PM _{2.5}	NOx	СО	SO ₂	VOC	HAPs	Pb
A01 + A02	8,900 hrs/yr	73.80	73.80	154.10	280.40	5.10	42.60	2.67	0
A03 + A04	8,900 hrs/yr	73.80	73.80	154.10	280.40	5.10	42.60	2.67	0
A05	500 hrs/yr	0.14	0.14	1.94	0.42	0.13	0.16	0.02	0
A06	500 hrs/yr	0.01	0.01	0.77	0.10	0.01	0.02	0.01	0
A07	8,760 hrs/yr	1.20	1.20	0	0	0	0	0	0
A08	500 hrs/yr	0.05	0.05	8.00	1.06	0.01	0.19	0.02	0